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Abstract 

Techno-economic analysis (TEA) is a well-established modeling process in which 

benefit-cost analysis (BCA) is used to evaluate the economic feasibility of emerging 

technologies. Most previous TEA studies focused on creating reliable cost estimates but returned 

deterministic net present values (NPV) and deterministic breakeven prices. The deterministic 

results cannot convey the considerable uncertainties embedded in techno-economic variables 

such as capital investment, conversion technology yield, and output prices. We obtain 

distributions of NPV, IRR, and breakeven price. The breakeven price is the most important 

indicator in TEA because it is independent of scale and communicates results effectively. The 

deterministic breakeven price is the price for which there is a 50 percent probability of earning 

more or less than the stipulated rate of return. For an investment under relatively high 

uncertainty, it is unlikely that investors would provide financing to a project with a 50 percent 

probability of loss. The point estimate breakeven price, therefore, does not represent the 

threshold under which investment would occur. In this study, we introduce the stochastic techno-

economic analysis in which we incorporate Monte Carlo simulation into traditional TEA. A case 

of cellulosic biofuel production from fast pyrolysis and hydroprocessing pathway is used to 

illustrate the method of modeling stochastic TEA and quantifying the breakeven price 

distribution. The input uncertainties are translated to outputs so that the probability density 

distribution of both NPV and breakeven price are derived. Two methods, a mathematical method 

and a programming method, are developed to quantify breakeven price distribution in a way that 

can consider future price trend and uncertainty. We analyze two scenarios, one assuming 

constant real future output prices, and the other assuming that future prices follow an increasing 

trend with stochastic disturbances. We demonstrate that the breakeven price distributions derived 



using our methods are consistent with the corresponding NPV distributions regarding the 

percentile value and the probability of gain/loss.  

Keywords: breakeven price; techno-economic analysis; cellulosic biofuel; Monte-Carlo 

simulation 

 

  



1. Introduction 

Techno-economic analysis (TEA) is a well-established modeling process, in which 

benefit-cost analysis (BCA) is usually used in conjunction with a fairly complete specification of 

the technology being evaluated. TEA has been used in evaluating emerging technologies that 

have not been commercialized but might achieve commercialization in the near future, such as 

advanced biofuel production pathways, solar photovoltaics, wind energy technologies, and 

carbon capture and storage technologies. Most previous TEA studies focused on creating reliable 

cost estimates for a given technology. They used deterministic analysis that provides point 

estimates and in no way communicates the uncertainty surrounding the point estimate. However, 

risk and uncertainty are a major impediment to investments in new technologies. Failing to 

communicate the levels of uncertainty does not meet the needs of potential investors or 

policymakers. Thus, it is important to address uncertainties in techno-economic parameters and 

translate them into communicable results. The major objective of this paper is to illustrate how 

this uncertainty analysis can be accomplished, and, in particular, how obtaining distributions of 

breakeven prices provides much richer information than previous approaches. 

The most commonly used profitability indicators for TEA are net present value (NPV), 

benefit-cost ratio (B/C), internal rate of return (IRR), and return on investment (ROI). 

Deterministic TEAs also calculate breakeven price, which is also known as minimum selling 

price (MSP). Breakeven price is generally defined as the constant real fuel price through the 

entire production period that makes NPV equal to zero. NPV is the most popular profitability 

indicator. However, for emerging technologies, it is often the case that the expected NPV is 

negative, and the distribution is sometimes hard for investors to interpret. Also, differences in 

NPV across different technology pathways are difficult to compare because of differences in 



scales, capital costs, etc. The IRR function often generates errors in stochastic analysis. Errors 

can and do occur when most of the flows are positive or negative, which is frequent with 

evaluation of new technologies not yet commercially viable. In contrast, the breakeven price 

distribution does not suffer from any of these problems. It is a unit price that is independent of 

scale. A higher breakeven price implies a higher unit cost and a lower possibility of profitability.  

The Pacific Northwest National Laboratory (PNNL), the National Renewable Energy 

Laboratory (NREL) and others conducted a large number of TEA studies on advanced biofuel 

production pathways (de Jong et al. 2015, Jones et al. 2009, Phillips et al. 2011, Brown et al. 

2013, Zhu et al. 2011). Although these studies used a breakeven price to evaluate projects, they 

mainly used deterministic analysis, which could not address the risks and uncertainties 

associated with a project. Nevertheless, risks and uncertainties associated with new technologies 

are both technical and economic. Common technical uncertainties are conversion efficiency, 

capital cost, and costs of key inputs. Economic uncertainties originate from any future prices, but 

in the energy arena, future fossil fuel prices are key. To account for both technical and economic 

uncertainties, several studies developed stochastic TEA by introducing Monte Carlo simulation 

into deterministic TEA. For example, Bittner, Tyner, and Zhao (2015) modeled aviation biofuel 

production from corn residues through fast pyrolysis. The study considered the main uncertainty 

parameters, such as capital investment, feedstock price, fuel yield, and oil price. They derived 

NPV distributions from Monte Carlo simulations.  The study compared two government policies, 

a reverse auction and a capital subsidy, based on NPV distributions. Bauer and Hulteberg (2014) 

developed a probability distribution for production cost by using Monte Carlo simulation when 

evaluating a new thermochemical production process for isobutanol. Furthermore, based on a 

discounted cash flow rate of return tool, Apostolakou et al. (2009) derived ROI distributions with 



respect to plant production capacity. Beyond NPV and cost distributions, some efforts were 

made examining the responsiveness of breakeven prices to uncertainty. For example, Reyes 

Valle et al. (2013) showed how MSPs respond to ±30% uncertainty in fixed capital costs. 

However, only a few papers attempted to extend this analysis to include a distribution of 

breakeven prices. Zhu et al. (2014) selected a sample size of 100 experimental cases to derive a 

cumulative density breakeven price distribution when evaluating a woody biomass hydrothermal 

liquefaction (HTL) upgrading plant. Our work suggests this sample size is too small to 

characterize the breakeven price distribution accurately. Abubakar, Sriramula, and Renton 

(2015) went a step further and developed a biodiesel probability density breakeven price 

distribution, but they did not present the methodology. The breakeven price is usually calculated 

by using numerical analysis tools such as the goal-seek function in Excel. A challenge in 

deriving breakeven price distribution is that standard Monte Carlo simulation cannot be 

performed directly in conjunction with a numerical analysis tool. Two recent studies from Yao et 

al. (2015) and Zhao, Brown, and Tyner (2015) developed a Macro programming method in 

which numerical tools were introduced in Monte Carlo simulation through programming, but 

future price uncertainties were not considered in the breakeven price distributions in either study.  

In our experience, a distribution of breakeven prices communicates better to decision 

makers the potential viability and risks of a potential project than the NPV distribution. Decision 

makers can compare it with their beliefs about future fossil fuel prices. It allows comparison 

among different pathways and production scenarios. Also, the cumulative distributions can be 

used to perform stochastic dominance analysis. The percentile of a breakeven price in its 

distribution indicates the probability for private investors of achieving their stipulated rate of 

return. It offers policymakers guidance on the level and type of price supports that might be 



needed. Therefore, it is important to develop a practical method for deriving breakeven price 

distribution to fill this gap in the literature.    

This study illustrates two methodologies (mathematical and programming methods) for 

estimating breakeven price distributions based on a case study of converting corn residues to 

biofuels using the fast pyrolysis and hydroprocessing (FPH) pathway evaluated by Zhao, Brown, 

and Tyner (2015). Section 2 describes the background of the FPH biofuel production case and 

outlines the stochastic TEA approach. Section 3 demonstrates two methodologies of deriving 

breakeven price distributions. In the mathematical approach, it is possible to derive equations so 

that the breakeven price can actually be captured in standard Monte Carlo simulation using the 

@Risk add-in in Microsoft Excel (Palisade Corporation 2014). Two scenarios with different 

future price projections are explained in section 3.2. In the case that the base model is too 

complicated due to multiple correlations and tax provisions, the preferred approach to estimating 

a breakeven price distribution is through using a Macro programming approach as explained in 

section 3.3. Section 4 provides conclusions and describes applications of breakeven price 

distribution analysis in policy research. 

2. Stochastic techno-economic analysis case study  

2.1 Case study background 

In this paper, we use the case of cellulosic biofuel production from a fast pyrolysis and 

hydroprocessing (FPH) pathway to illustrate the method of stochastic TEA and the breakeven 

price distribution. Fast pyrolysis is a thermal process that converts biomass into bio-oil, char, and 

non-condensable gas. The bio-oil produced from pyrolysis is upgraded through hydroprocessing 

that includes hydrotreating and hydrocracking to be blended with fossil fuels. Fig. S1 in the 

supplemental online material (SOM) presents a schematic depicting the FPH production 



pathway. We employed the data of FPH pathway from Zhao et al. (2015) with minor 

modifications. That study employed a financial analysis based TEA to calculate net present 

values and breakeven prices. They modeled a 22-year project life plant with a size of 2,000 dry 

metric tons of feedstock per day (MTPD). Corn residue was used as a feedstock to produce two 

drop-in fuels, biogasoline, and biodiesel. Electricity was also produced as a co-product from the 

combustion of non-condensable gas and char. The base year was 2011. A 10-year loan was 

assumed with 50% debt fraction and 7.5% nominal interest rate. The inflation rate and the real 

discount rate used were 2.5% and 10%, respectively. Table S1 in SOM presents a summary of 

technical and economic assumptions. Fig. 1 shows the flow chart of net cash flows in the 

cellulosic biofuel production using the FPH pathway. 

The previous studies incorporated uncertainty for five techno-economic variables: future 

fuel prices, capital cost, conversion technology yield, hydrogen cost, and feedstock cost. Pert 

distributions were quantified for the capital cost, hydrogen cost and feedstock cost, and a Beta 

general distribution was benchmarked for conversion technology yield. Geometric Brownian 

motion (GBM) was used to project gasoline prices. The formula is shown in equation (1): 

𝑃𝑡 = 𝑃𝑡−1 × 𝑒𝑔 +  ε𝑡          (1) 

where Pt is the price at period t, Pt-1 is the price in the previous period, e is the base of the natural 

logarithm, and g is the expected growth rate. εt was the random component at period t, and ε0 was 

zero since the initial price was certain $2.87/gal. (EIA 2015). A 0.27% real gasoline price growth 

rate from U.S. Energy Information Administration (EIA) was used. In the original study, the 

price change random components followed a normal distribution with a mean of zero and a 

standard deviation calculated from historical prices. In this study, instead of using a normal 

distribution for εt, we employ a comparable Pert distribution since the Pert distribution is 



bounded so that it returns less extreme values in simulations. A Pert distribution requires 

parameters for the min, mode, and max values to define the distribution. A zero mode is used, 

and the 5th and 95th percentile values of the original normal distribution are used as the min and 

max in the Pert distribution. Diesel prices are projected based on historical price relationship 

between diesel and gasoline. In the present study, we outline the approach of modeling stochastic 

TEA and quantifying NPV and breakeven price distributions, but we do not address the method 

of quantifying input uncertainties. Hence, most of the parameters employed in the uncertain 

variable distributions are adapted from and documented in the previous studies (SOM Table S2). 

We use the mean values of uncertain distributions for the deterministic analysis. 

2.2 Net present value distribution  

It is important to note the difference between deterministic analysis and stochastic 

analysis. The deterministic analysis results in point estimations based on expected values. The 

stochastic analysis involves randomly sampling all the uncertain probability distributions 

repeatedly. In other words, for each iteration of the Monte Carlo simulation, an NPV is 

calculated and stored based on randomly drawn input values. Hence, the NPV distribution 

translates the inherent uncertainty in all the input variables into NPV uncertainty.  

3. Breakeven price distribution 

In the present study, a chief objective is to develop the method of quantifying breakeven 

price distributions. In regard to calculating a deterministic breakeven price, the common method 

is to employ numerical analysis tools such as the goal-seek tool in Excel, to drive NPV to zero 

by changing a target price. However, for quantifying the breakeven price distribution in 

stochastic analysis, the numerical analysis tools cannot be used directly in the Monte Carlo 



simulation. In this section, we develop two methods, a mathematical method and a programming 

method, to quantify breakeven price distributions. Section 3.1 demonstrates the basic math of 

deriving breakeven price. A detailed analysis of the mathematical method is discussed using the 

FPH case as an example in Section 3.2. Section 3.3 explains the programming method.  

3.1 Breakeven price 

To approach breakeven price, we started with the NPV, which is the sum of the present 

value of each period: 

𝑁𝑃𝑉 = ∑
(𝐵𝑡−𝐶𝑡)

(1+𝑟)𝑡
𝑛
𝑡=0            (2) 

where t denotes period; n denotes the total number of periods; r denotes the real discount rate; Bt 

and Ct represent the total benefit and the total cost in period t, respectively.  

Rearranging (2): 

𝑁𝑃𝑉 = ∑
𝐵𝑡

(1+𝑟)𝑡
𝑛
𝑡=0 − ∑

𝐶𝑡

(1+𝑟)𝑡
𝑛
𝑡=0        (3) 

Bt here is the total benefit in period t of an output we target and for which the breakeven 

price would be derived; Ct is the total net cost, which represents the net cash flow without Bt in 

period t.  Bt can be broken down into Qt and Pt as the production volume and price of the output 

in period t. Thus,  

𝑁𝑃𝑉 = ∑
𝑄𝑡×𝑃𝑡

(1+𝑟)𝑡
𝑛
𝑡=0 − ∑

𝐶𝑡

(1+𝑟)𝑡
𝑛
𝑡=0        (4) 

Breakeven price is usually defined as the price (constant in real terms over the life of the 

project) that drives NPV to zero. In that sense, it is akin to the internal rate of return. When using 

this definition of breakeven price, future output price uncertainty would not be included in the 



breakeven price distribution. In this case, assuming 𝑃𝑡 is not correlated with 𝐶𝑡, by setting NPV 

to zero, the breakeven price 𝑃𝑡 can be calculated.  

𝑃𝑡 =
∑

𝐶𝑡
(1+𝑖)𝑡

𝑛
𝑡=0

∑
𝑄𝑡

(1+𝑖)𝑡
𝑛
𝑡=0

         (5) 

According to equation (5), the breakeven price is the ratio of net present cost (NPC) over 

the net present production (NPP), namely, the sum of the discounted costs divided by the sum of 

the discounted production volumes. It may seem strange to discount quantities, but that is 

necessary to get the correct timing of production matching the timing of costs. Monte Carlo 

simulation can be performed based on equation (5). In each iteration, uncertain input variables 

are sampled from input distributions, based on which a 𝐶𝑡 and a 𝑄𝑡 are derived, and a breakeven 

price is calculated accordingly. The breakeven price distribution is the probability density 

distribution of all the breakeven prices calculated in the Monte Carlo simulation. Note that 

equation (5) assumes that 𝑃𝑡 is not correlated with 𝐶𝑡. If 𝑃𝑡 were correlated with 𝐶𝑡, further work 

would be necessary to factor out the output price, as is demonstrated using the FPH example in 

section 3.2. Another assumption in deriving equation (5) is that future prices are constant in real 

terms.  In other words, the breakeven price distribution resulting from this simple construct is the 

constant real price with no correlations in the model and no other complications such as income 

taxes. More generalized cases are described in the following section. 

3.2 Breakeven price distribution using the mathematical method 

In the FPH pathway case, since 𝑃𝑡 is correlated with 𝐶𝑡 through income tax, and gasoline 

price is correlated with diesel price, additional derivations are necessary to derive breakeven 

gasoline price. Two scenarios contingent on future fuel price assumptions are analyzed. Scenario 



1 assumes future fuel prices are constant in real terms. Hence, the breakeven price distribution in 

scenario 1 does not consider the uncertainty or trend in future prices. In scenario 2, future fuel 

prices are assumed to follow an unstable trajectory, the GBM fuel price projection, so that the 

future price trend and uncertainty become a part of the breakeven initial price distribution.  

3.2.1 Scenario 1, constant future prices  

For the scenario 1 analysis, the equations in Section 3.1 need some modifications. The 

total benefit in period t, 𝐵𝑡, and the total cost in period t, 𝐶𝑡, are in the form of net cash flows, 

starting with the net cash inflow in period t, 

 𝐵𝑡 = 𝐵𝑡
𝑔𝑎𝑠

+ 𝐵𝑡
𝑑𝑖𝑒𝑠𝑒𝑙 + 𝐵𝑡

𝑒𝑙𝑒𝑐        (6) 

where 𝐵𝑡
𝑔𝑎𝑠

, 𝐵𝑡
𝑑𝑖𝑒𝑠𝑒𝑙 and 𝐵𝑡

𝑒𝑙𝑒𝑐 represent the revenue from gasoline, diesel, and electricity in 

period t, respectively. The capital investment, land investment, total project investment (TPI) and 

the initial working capital, are financed by a combination of equity and debt. Denote 𝐸𝑡 as the 

equity investment in period t, 𝐿𝑆𝑡 as the land salvage value in period t, 𝑃𝑀𝑇𝑡 as the loan 

repayment in period t. Also denote 𝑁𝑊𝐶𝑡 as the net working capital in period t, 𝑂𝐶𝑡 as the 

operating cost in period t and 𝑇𝑡 as tax payment in period t. Thus, the cost in period t, 𝐶𝑡, is: 

 𝐶𝑡 = 𝐸𝑡 − 𝐿𝑆𝑡 + 𝑁𝑊𝐶𝑡+𝑃𝑀𝑇𝑡 + 𝑂𝐶𝑡 + 𝑇𝑡      (7) 

 The net benefit in period t is: 

            𝐵𝑡 − 𝐶𝑡 = 𝐵𝑡
𝑔𝑎𝑠

+ 𝐵𝑡
𝑑𝑖𝑒𝑠𝑒𝑙 + 𝐵𝑡

𝑒𝑙𝑒𝑐 − (𝐸𝑡−𝐿𝑆𝑡 + 𝑁𝑊𝐶𝑡+𝑃𝑀𝑇𝑡 + 𝑂𝐶𝑡 + 𝑇𝑡) (8) 

 Denote 𝑃𝑡
𝑔𝑎𝑠

 as gasoline price in period t and 𝑄𝑡
𝑔𝑎𝑠

 as gasoline production in period t. 

The gasoline price is the target for breakeven price calculation. Thus, 



             𝐵𝑡
𝑔𝑎𝑠

= 𝑃𝑡
𝑔𝑎𝑠

× 𝑄𝑡
𝑔𝑎𝑠

         (9) 

 Denote 𝑃𝑡
𝑑𝑖𝑒𝑠𝑒𝑙 as diesel price in period t and 𝑄𝑡

𝑑𝑖𝑒𝑠𝑒𝑙 as diesel production in period t. 

Thus, 

 𝐵𝑡
𝑑𝑖𝑒𝑠𝑒𝑙 = 𝑃𝑡

𝑑𝑖𝑒𝑠𝑒𝑙 × 𝑄𝑡
𝑑𝑖𝑒𝑠𝑒𝑙        (10) 

 As stated above, diesel prices are assumed to be linearly correlated with gasoline prices, 

 𝑃𝑡
𝑑𝑖𝑒𝑠𝑒𝑙 = 𝛼𝑃𝑡

𝑔𝑎𝑠
+ 𝛽         (11) 

Substituting (11) into (10), 

 𝐵𝑡
𝑑𝑖𝑒𝑠𝑒𝑙 = (𝛼𝑃𝑡

𝑔𝑎𝑠
+ 𝛽) × 𝑄𝑡

𝑑𝑖𝑒𝑠𝑒𝑙       (12) 

Denote 𝐷𝐸𝑃𝑡 as depreciation in period t, 𝐼𝑁𝑇𝑡 as interest payment in period t, and 𝑅𝑡𝑎𝑥 as tax 

rate. Thus, the tax payment, 𝑇𝑡, is 

            𝑇𝑡 = (𝐵𝑡
𝑔𝑎𝑠

+ 𝐵𝑡
𝑑𝑖𝑒𝑠𝑒𝑙 + 𝐵𝑡

𝑒𝑙𝑒𝑐 − 𝑂𝐶𝑡 − 𝑁𝑊𝐶𝑡 − 𝐷𝐸𝑃𝑡−𝐼𝑁𝑇𝑡) × 𝑅𝑡𝑎𝑥  (13) 

 Substituting (9), (12) and (13) into (8), rearranging,  

𝐵𝑡 − 𝐶𝑡 = 𝑃𝑡
𝑔𝑎𝑠

× [(𝑄𝑡
𝑔𝑎𝑠

+ 𝛼 × 𝑄𝑡
𝑑𝑖𝑒𝑠𝑒𝑙) × (1 − 𝑅𝑡𝑎𝑥)] + (𝛽 × 𝑄𝑡

𝑑𝑖𝑒𝑠𝑒𝑙 + 𝐵𝑡
𝑒𝑙𝑒𝑐−𝑂𝐶𝑡 −

𝑁𝑊𝐶𝑡) × (1 − 𝑅𝑡𝑎𝑥) + (𝐷𝐸𝑃𝑡+𝐼𝑁𝑇𝑡) × 𝑅𝑡𝑎𝑥 − (𝐸𝑡−𝐿𝑆𝑡+𝑃𝑀𝑇𝑡)   (14) 

Substituting (14) into (2), 

 𝑁𝑃𝑉 =

∑
{𝑃𝑡

𝑔𝑎𝑠
×[(𝑄𝑡

𝑔𝑎𝑠
+𝛼×𝑄𝑡

𝑑𝑖𝑒𝑠𝑒𝑙)×(1−𝑅𝑡𝑎𝑥)]+(𝛽×𝑄𝑡
𝑑𝑖𝑒𝑠𝑒𝑙+𝐵𝑡

𝑒𝑙𝑒𝑐−𝑂𝐶𝑡−𝑁𝑊𝐶𝑡)×(1−𝑅𝑡𝑎𝑥)+(𝐷𝐸𝑃𝑡+𝐼𝑁𝑇𝑡)×𝑅𝑡𝑎𝑥−(𝐸𝑡−𝐿𝑆𝑡+𝑃𝑀𝑇𝑡)}

(1+𝑟)𝑡
𝑛
𝑡=0  

            (15) 



Setting NPV to zero and rearranging we get the following equation for breakeven price, 

   𝑃𝑡
𝑔𝑎𝑠

=
∑

[−(𝛽×𝑄𝑡
𝑑𝑖𝑒𝑠𝑒𝑙+𝐵𝑡

𝑒𝑙𝑒𝑐−𝑂𝐶𝑡−𝑁𝑊𝐶𝑡)×(1−𝑅𝑡𝑎𝑥)−(𝐷𝐸𝑃𝑡+𝐼𝑁𝑇𝑡)×𝑅𝑡𝑎𝑥+(𝐸𝑡−𝐿𝑆𝑡+𝑃𝑀𝑇𝑡)]

(1+𝑟)𝑡
𝑛
𝑡=0

∑
[(𝑄𝑡

𝑔𝑎𝑠
+𝛼×𝑄𝑡

𝑑𝑖𝑒𝑠𝑒𝑙)×(1−𝑅𝑡𝑎𝑥)]

(1+𝑟)𝑡
𝑛
𝑡=0

 (16) 

Monte Carlo simulation with 10,000 iterations was conducted based on equation (16). In 

each iteration, a value of capital cost sampled from its distribution was returned based on which 

𝐸𝑡,  𝐿𝑆𝑡, 𝑃𝑀𝑇𝑡, 𝐼𝑁𝑇𝑡  and 𝐷𝐸𝑃𝑡 were calculated for each period. Similarly, uncertain input 

distributions for conversion technology yield, hydrogen cost and feedstock cost were sampled, 

and 𝑄𝑡
𝑔𝑎𝑠

, 𝑄𝑡
𝑑𝑖𝑒𝑠𝑒𝑙, 𝐵𝑡

𝑒𝑙𝑒𝑐, 𝑂𝐶𝑡, and 𝑊𝐶𝑡 were calculated in each iteration. As a result, a 

breakeven gasoline price, 𝑃𝑡
𝑔𝑎𝑠

, was calculated based on the sampled and calculated values. 

Thus, the breakeven price distribution was generated as the probability density distribution of the 

10,000 breakeven prices calculated in the simulation. The breakeven price distribution result is 

shown in Fig. 2A. As expected, the mean of the distribution is around the deterministic mean of 

$3.11/GGE. The standard deviation is $0.23/GGE. In this case, the probability of loss/gain is the 

probability that the breakeven price is lower/higher than the market price.  

3.2.2 Scenario 2, increasing future prices with uncertainty 

In the case that future prices follow an unstable trajectory, as long as future prices are 

projected based on the initial price, the breakeven initial price can be derived. In this scenario, 

we assume that future prices followed the GBM price projection described in equation (1). From 

GBM price projection, equation (1), 𝑃𝑡
𝑔𝑎𝑠

 can be generalized: 

 𝑃𝑡
𝑔𝑎𝑠

=  𝑃0
𝑔𝑎𝑠

𝑒𝑡𝑔 + ∑ 𝜀𝑖𝑒
(𝑡−𝑖)𝑔𝑡

𝑖=0        (17) 

Substituting (17) into (15), 



 𝑁𝑃𝑉 = ∑
(𝑃0

𝑔𝑎𝑠
𝑒𝑡𝑔+∑ 𝜀𝑖𝑒(𝑡−𝑖)𝑔𝑡

𝑖=0 )×[(𝑄𝑡
𝑔𝑎𝑠

+𝛼×𝑄𝑡
𝑑𝑖𝑒𝑠𝑒𝑙)×(1−𝑅𝑡𝑎𝑥)]

(1+𝑟)𝑡
𝑛
𝑡=0 +

∑
(𝛽×𝑄𝑡

𝑑𝑖𝑒𝑠𝑒𝑙+𝐵𝑡
𝑒𝑙𝑒𝑐−𝑂𝐶𝑡−𝑁𝑊𝐶𝑡)×(1−𝑅𝑡𝑎𝑥)+(𝐷𝐸𝑃𝑡+𝐼𝑁𝑇𝑡)×𝑅𝑡𝑎𝑥−(𝐸𝑡−𝐿𝑆𝑡+𝑃𝑀𝑇𝑡)

(1+𝑟)𝑡
𝑛
𝑡=0    (18) 

By setting NPV to zero and rearranging, 𝑃0
𝑔𝑎𝑠

 can be derived. 

𝑃0
𝑔𝑎𝑠

=

∑
[− ∑ 𝜀𝑖𝑒(𝑡−𝑖)𝑔×𝑡

𝑖=0 (𝑄𝑡
𝑔𝑎𝑠

+𝛼×𝑄𝑡
𝑑𝑖𝑒𝑠𝑒𝑙)×(1−𝑅𝑡𝑎𝑥)−(𝛽×𝑄𝑡

𝑑𝑖𝑒𝑠𝑒𝑙+𝐵𝑡
𝑒𝑙𝑒𝑐−𝑂𝐶𝑡−𝑁𝑊𝐶𝑡)×(1−𝑅𝑡𝑎𝑥)−(𝐷𝐸𝑃𝑡+𝐼𝑁𝑇𝑡)×𝑅𝑡𝑎𝑥+(𝐸𝑡−𝐿𝑆𝑡+𝑃𝑀𝑇𝑡)]

(1+𝑟)𝑡
𝑛
𝑡=0

∑
𝑒𝑡𝑔×[(𝑄𝑡

𝑔𝑎𝑠
+𝛼×𝑄𝑡

𝑑𝑖𝑒𝑠𝑒𝑙)×(1−𝑅𝑡𝑎𝑥)]

(1+𝑟)𝑡
𝑛
𝑡=0

            (19) 

Therefore, the initial gasoline price, 𝑃0
𝑔𝑎𝑠

, was simulated based on equation (19) through 

Monte Carlo simulation, and the breakeven initial price distribution was derived (presented in 

Fig. 2B). The mean of the distribution is $3.04/GGE, and the standard deviation is $0.52/GGE. 

Fig. 2C shows the comparison of the breakeven initial price distribution with and without future 

price trend and uncertainty. The breakeven initial price distribution shifts to left due to the 

increasing future price trend, and the distribution becomes wider because of future price 

uncertainty. Fig. 3A and Fig. 3B present the cumulative density distribution (CDD) of NPV and 

breakeven initial price, respectively. A point on the CDDs represents the probability that NPV or 

breakeven price is smaller than a given value of NPV or breakeven initial price. The breakeven 

initial price CDD was inverted since a higher breakeven price corresponds to a lower NPV. We 

discover that NPV distributions and breakeven price distributions are consistent in terms of 

percentile value and probability of gain/loss. In other words, for a given NPV in Monte Carlo 

simulation, there is a corresponding breakeven initial price driving the NPV to zero. Moreover, 



the probability found in CDDs at the given NPV and its corresponding breakeven initial price are 

equal. This is verified by overlapping the NPV CDD and breakeven initial price CDD (Fig. 3C).  

3.3 Breakeven price distribution using the programming method 

As shown in section 3.2, the math involved in deriving a mathematical solution can 

become quite involved in complex cases. An alternative way to obtain a breakeven price 

distribution is to rely on a programming methodology. The followings are steps make use of both 

the @Risk add-in and Excel Macro Programming: 

1) A Monte Carlo simulation with a designated number of iterations is run. All 

simulated values for uncertain variables returned in each iteration are saved. 

Uncertainties in future prices can be modeled by treating random components as 

members of simulation inputs. The randomly generated input values of each iteration 

are treated as one set of simulated values. 

2) All sets of randomly simulated values are entered in the model. Each set of simulated 

values generates one corresponding breakeven price by applying the Excel goal-seek 

function.  

3) Probability and cumulative density distributions can be generated based on the 

sample of breakeven prices. The resulting breakeven price distributions can be fit to 

the closest standard distribution using common statistic methods. The @Risk 

software performs this distribution fitting. The breakeven price at each percentile is 

obtained. 

4) Increase the number of iterations of each simulation and repeat 1-3 steps until a 

smooth and convergent breakeven price distribution is derived. 



Our analyses show that programming and mathematical procedure yield the same 

breakeven price distributions when the number of iterations is large enough. The programming 

method can be a way to examine the accuracy of breakeven price distributions generated by 

mathematical methods. The programming method to calculate the breakeven price is practical 

and understandable. When it comes to a complex system with multiple categories of inputs and 

outputs, the mathematical transformation of equations become complicated to derive. The 

complexity of correlations and byproducts may require intensive work to derive mathematical 

breakeven price expressions. For example, in Yao et al. (2015)’s techno-economic analysis of 

alcohol-to-jet fuel production from switchgrass and sugarcane, co-firing of the co-produced 

bagasse produces heat and electricity, which can be further utilized as inputs in fuel production. 

The excess electricity is exported to the electric grid. The purchasing and selling prices of 

electricity are different. In the alcohol-to-jet fuel production from corn grain case, sales of the 

byproducts distiller’s dried grains with solubles (DDGS) generate revenues, of which the price is 

a function of corn prices. In these scenarios, it is not easy to transform NPV equations 

mathematically to derive breakeven price distributions, and the programming method is a 

preferred method.  

On the other hand, the mathematical method is more convenient for conducting 

sensitivity analysis, and the programming method may be time-consuming due to the massive 

calculations. In general, a mathematical method is a preferred option for simple cases, and 

programming method is universal and is a better fit in complicated cases. The bottom line is that 

we have described methods that will generate breakeven price distributions for any analysis 

project case being evaluated. 

3.4 Sensitivity analysis  



The methods developed in previous sections permit analysis of measuring how sensitive 

is breakeven price with regard to important uncertain variables. Besides the boundary sensitivity 

analysis, we can perform statistic sensitivity analysis applying simulation data (Palisade 

Corporation 2014). Fig. 4A presents the regression coefficients from the regression of breakeven 

fuel price on key uncertain variables including capital investment, fuel yield, hydrogen price and 

feedstock cost, assuming constant future fuel prices. The number of observations equals the total 

number of iterations in simulations. Fig. 4B shows the sensitivity result of the mean breakeven 

price on input percentile of uncertain variables. Thus, both figures demonstrate how the 

breakeven fuel price changes as the sampled input value changes, and the results are consistent. 

The breakeven fuel price is most sensitive to corn residue price, followed by fuel yield and 

hydrogen price. Capital cost is relatively less influential than the other three variables. From this 

analysis, one can see that government policies that aim at reducing risks in technology 

conversion yield and reducing feedstock cost will help lower the breakeven price as well as 

enhance the probability of the FPH project.   

4. Conclusions 

Breakeven price is an advantageous economic indicator compared with net present value 

(NPV) or internal rate of return (IRR) when evaluating emerging technologies with techno-

economic analysis (TEA). In this study, we highlighted the stochastic techno-economic analysis 

in which Monte Carlo simulation was incorporated into traditional TEA. A case of cellulosic 

biofuel production from fast pyrolysis and hydroprocessing (FPH) pathway was used to illustrate 

the methodologies for quantifying the breakeven price distributions. A breakeven price was 

calculated for every iteration in the Monte Carlo simulation. A mathematical method and a 

programming method were developed to quantify breakeven price distribution in a way that can 



consider future price trend and uncertainty. We demonstrated that the breakeven price 

distributions derived using our methods were coherent with the corresponding NPV distributions 

regarding the percentile value and the probability of gain/loss.  

Our experience suggests that breakeven price distributions communicate to investors and 

decision makers much more effectively than the typical NPV or IRR distributions, and users of 

the analysis can easily understand it. The distributions can be also used to conduct stochastic 

dominance analysis to compare projects from the perspective of risk-averse investors (Yao et al. 

2015, Zhao, Brown, and Tyner 2015). In addition, breakeven price distributions are useful for 

conducting policy analysis. One illustration is examining the impact of length of offtake 

contracts on likely bid price in a reverse auction. A reverse auction is one in which the lowest 

qualified bidder for an offtake contract wins the contract. In prior work, it is found that the 

expected bid level decreases with the length of the contract because shorter contracts leave the 

bidder open to market price uncertainties for a longer period (Bittner, Tyner, and Zhao 2015). 

Reverse auctions are one policy option being considered for government procurement of 

advanced biofuels.  

  For all these reasons, we believe that including breakeven price distributions in 

stochastic techno-economic analysis provides a very valuable addition. In this paper, we have 

explained how this metric can be included in the analysis. 
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Fig.1 Net cash flow chart of cellulosic biofuel production using the fast pyrolysis and 

hydroprocessing pathway. 

 

 

 

 

 

 

 

  



Fig. 2 Breakeven price distributions. a. The breakeven price distribution with no future price 

trend and uncertainty; b. the breakeven price with future price trend and uncertainty. The curves 

in figure a. and b. are fitted distributions. The comparison of the fitted distributions is presented 

in figure c. 

 

 

 



Fig. 3 Cumulative density distribution of NPV and breakeven initial price, based on all the 

uncertain variables. a. The NPV Cumulative density distribution; b. The breakeven initial price 

cumulative density distribution. c. The overlap of figures a. and b. The shaded area in figure c 

represents 25th to 75th percentile area. 

 

 

  



Fig. 4. Sensitivity analysis of breakeven price. a. The regression coefficient of breakeven price 

on uncertain variables; b. breakeven price sensitivity on input percentile of uncertain variables.  
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	Techno-economic analysis (TEA) is a well-established modeling process, in which benefit-cost analysis (BCA) is usually used in conjunction with a fairly complete specification of the technology being evaluated. TEA has been used in evaluating emerging technologies that have not been commercialized but might achieve commercialization in the near future, such as advanced biofuel production pathways, solar photovoltaics, wind energy technologies, and carbon capture and storage technologies. Most previous TEA s
	The most commonly used profitability indicators for TEA are net present value (NPV), benefit-cost ratio (B/C), internal rate of return (IRR), and return on investment (ROI). Deterministic TEAs also calculate breakeven price, which is also known as minimum selling price (MSP). Breakeven price is generally defined as the constant real fuel price through the entire production period that makes NPV equal to zero. NPV is the most popular profitability indicator. However, for emerging technologies, it is often th
	scales, capital costs, etc. The IRR function often generates errors in stochastic analysis. Errors can and do occur when most of the flows are positive or negative, which is frequent with evaluation of new technologies not yet commercially viable. In contrast, the breakeven price distribution does not suffer from any of these problems. It is a unit price that is independent of scale. A higher breakeven price implies a higher unit cost and a lower possibility of profitability.  
	The Pacific Northwest National Laboratory (PNNL), the National Renewable Energy Laboratory (NREL) and others conducted a large number of TEA studies on advanced biofuel production pathways (de Jong et al. 2015, Jones et al. 2009, Phillips et al. 2011, Brown et al. 2013, Zhu et al. 2011). Although these studies used a breakeven price to evaluate projects, they mainly used deterministic analysis, which could not address the risks and uncertainties associated with a project. Nevertheless, risks and uncertainti
	respect to plant production capacity. Beyond NPV and cost distributions, some efforts were made examining the responsiveness of breakeven prices to uncertainty. For example, Reyes Valle et al. (2013) showed how MSPs respond to ±30% uncertainty in fixed capital costs. However, only a few papers attempted to extend this analysis to include a distribution of breakeven prices. Zhu et al. (2014) selected a sample size of 100 experimental cases to derive a cumulative density breakeven price distribution when eval
	In our experience, a distribution of breakeven prices communicates better to decision makers the potential viability and risks of a potential project than the NPV distribution. Decision makers can compare it with their beliefs about future fossil fuel prices. It allows comparison among different pathways and production scenarios. Also, the cumulative distributions can be used to perform stochastic dominance analysis. The percentile of a breakeven price in its distribution indicates the probability for priva
	needed. Therefore, it is important to develop a practical method for deriving breakeven price distribution to fill this gap in the literature.    
	This study illustrates two methodologies (mathematical and programming methods) for estimating breakeven price distributions based on a case study of converting corn residues to biofuels using the fast pyrolysis and hydroprocessing (FPH) pathway evaluated by Zhao, Brown, and Tyner (2015). Section 2 describes the background of the FPH biofuel production case and outlines the stochastic TEA approach. Section 3 demonstrates two methodologies of deriving breakeven price distributions. In the mathematical approa
	2. Stochastic techno-economic analysis case study  
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	In this paper, we use the case of cellulosic biofuel production from a fast pyrolysis and hydroprocessing (FPH) pathway to illustrate the method of stochastic TEA and the breakeven price distribution. Fast pyrolysis is a thermal process that converts biomass into bio-oil, char, and non-condensable gas. The bio-oil produced from pyrolysis is upgraded through hydroprocessing that includes hydrotreating and hydrocracking to be blended with fossil fuels. Fig. S1 in the supplemental online material (SOM) present
	pathway. We employed the data of FPH pathway from Zhao et al. (2015) with minor modifications. That study employed a financial analysis based TEA to calculate net present values and breakeven prices. They modeled a 22-year project life plant with a size of 2,000 dry metric tons of feedstock per day (MTPD). Corn residue was used as a feedstock to produce two drop-in fuels, biogasoline, and biodiesel. Electricity was also produced as a co-product from the combustion of non-condensable gas and char. The base y
	The previous studies incorporated uncertainty for five techno-economic variables: future fuel prices, capital cost, conversion technology yield, hydrogen cost, and feedstock cost. Pert distributions were quantified for the capital cost, hydrogen cost and feedstock cost, and a Beta general distribution was benchmarked for conversion technology yield. Geometric Brownian motion (GBM) was used to project gasoline prices. The formula is shown in equation (1): 
	𝑃𝑡=𝑃𝑡−1×𝑒𝑔+  ε𝑡          (1) 
	where Pt is the price at period t, Pt-1 is the price in the previous period, e is the base of the natural logarithm, and g is the expected growth rate. εt was the random component at period t, and ε0 was zero since the initial price was certain $2.87/gal. (EIA 2015). A 0.27% real gasoline price growth rate from U.S. Energy Information Administration (EIA) was used. In the original study, the price change random components followed a normal distribution with a mean of zero and a standard deviation calculated
	bounded so that it returns less extreme values in simulations. A Pert distribution requires parameters for the min, mode, and max values to define the distribution. A zero mode is used, and the 5th and 95th percentile values of the original normal distribution are used as the min and max in the Pert distribution. Diesel prices are projected based on historical price relationship between diesel and gasoline. In the present study, we outline the approach of modeling stochastic TEA and quantifying NPV and brea
	2.2 Net present value distribution  
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	2.2 Net present value distribution  
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	It is important to note the difference between deterministic analysis and stochastic analysis. The deterministic analysis results in point estimations based on expected values. The stochastic analysis involves randomly sampling all the uncertain probability distributions repeatedly. In other words, for each iteration of the Monte Carlo simulation, an NPV is calculated and stored based on randomly drawn input values. Hence, the NPV distribution translates the inherent uncertainty in all the input variables i
	3. Breakeven price distribution 
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	3. Breakeven price distribution 


	In the present study, a chief objective is to develop the method of quantifying breakeven price distributions. In regard to calculating a deterministic breakeven price, the common method is to employ numerical analysis tools such as the goal-seek tool in Excel, to drive NPV to zero by changing a target price. However, for quantifying the breakeven price distribution in stochastic analysis, the numerical analysis tools cannot be used directly in the Monte Carlo 
	simulation. In this section, we develop two methods, a mathematical method and a programming method, to quantify breakeven price distributions. Section 3.1 demonstrates the basic math of deriving breakeven price. A detailed analysis of the mathematical method is discussed using the FPH case as an example in Section 3.2. Section 3.3 explains the programming method.  
	3.1 Breakeven price 
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	To approach breakeven price, we started with the NPV, which is the sum of the present value of each period: 
	𝑁𝑃𝑉=∑(𝐵𝑡−𝐶𝑡)(1+𝑟)𝑡𝑛𝑡=0           (2) 
	where t denotes period; n denotes the total number of periods; r denotes the real discount rate; Bt and Ct represent the total benefit and the total cost in period t, respectively.  
	Rearranging (2): 
	𝑁𝑃𝑉=∑𝐵𝑡(1+𝑟)𝑡𝑛𝑡=0−∑𝐶𝑡(1+𝑟)𝑡𝑛𝑡=0       (3) 
	Bt here is the total benefit in period t of an output we target and for which the breakeven price would be derived; Ct is the total net cost, which represents the net cash flow without Bt in period t.  Bt can be broken down into Qt and Pt as the production volume and price of the output in period t. Thus,  
	𝑁𝑃𝑉=∑𝑄𝑡×𝑃𝑡(1+𝑟)𝑡𝑛𝑡=0−∑𝐶𝑡(1+𝑟)𝑡𝑛𝑡=0       (4) 
	Breakeven price is usually defined as the price (constant in real terms over the life of the project) that drives NPV to zero. In that sense, it is akin to the internal rate of return. When using this definition of breakeven price, future output price uncertainty would not be included in the 
	breakeven price distribution. In this case, assuming 𝑃𝑡 is not correlated with 𝐶𝑡, by setting NPV to zero, the breakeven price 𝑃𝑡 can be calculated.  
	𝑃𝑡=∑𝐶𝑡(1+𝑖)𝑡𝑛𝑡=0∑𝑄𝑡(1+𝑖)𝑡𝑛𝑡=0         (5) 
	According to equation (5), the breakeven price is the ratio of net present cost (NPC) over the net present production (NPP), namely, the sum of the discounted costs divided by the sum of the discounted production volumes. It may seem strange to discount quantities, but that is necessary to get the correct timing of production matching the timing of costs. Monte Carlo simulation can be performed based on equation (5). In each iteration, uncertain input variables are sampled from input distributions, based on
	3.2 Breakeven price distribution using the mathematical method 
	3.2 Breakeven price distribution using the mathematical method 
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	In the FPH pathway case, since 𝑃𝑡 is correlated with 𝐶𝑡 through income tax, and gasoline price is correlated with diesel price, additional derivations are necessary to derive breakeven gasoline price. Two scenarios contingent on future fuel price assumptions are analyzed. Scenario 
	1 assumes future fuel prices are constant in real terms. Hence, the breakeven price distribution in scenario 1 does not consider the uncertainty or trend in future prices. In scenario 2, future fuel prices are assumed to follow an unstable trajectory, the GBM fuel price projection, so that the future price trend and uncertainty become a part of the breakeven initial price distribution.  
	3.2.1 Scenario 1, constant future prices  
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	For the scenario 1 analysis, the equations in Section 3.1 need some modifications. The total benefit in period t, 𝐵𝑡, and the total cost in period t, 𝐶𝑡, are in the form of net cash flows, starting with the net cash inflow in period t, 
	 𝐵𝑡=𝐵𝑡𝑔𝑎𝑠+𝐵𝑡𝑑𝑖𝑒𝑠𝑒𝑙+𝐵𝑡𝑒𝑙𝑒𝑐        (6) 
	where 𝐵𝑡𝑔𝑎𝑠, 𝐵𝑡𝑑𝑖𝑒𝑠𝑒𝑙 and 𝐵𝑡𝑒𝑙𝑒𝑐 represent the revenue from gasoline, diesel, and electricity in period t, respectively. The capital investment, land investment, total project investment (TPI) and the initial working capital, are financed by a combination of equity and debt. Denote 𝐸𝑡 as the equity investment in period t, 𝐿𝑆𝑡 as the land salvage value in period t, 𝑃𝑀𝑇𝑡 as the loan repayment in period t. Also denote 𝑁𝑊𝐶𝑡 as the net working capital in period t, 𝑂𝐶𝑡 as the op
	 𝐶𝑡=𝐸𝑡−𝐿𝑆𝑡+𝑁𝑊𝐶𝑡+𝑃𝑀𝑇𝑡+𝑂𝐶𝑡+𝑇𝑡      (7) 
	 The net benefit in period t is: 
	            𝐵𝑡−𝐶𝑡=𝐵𝑡𝑔𝑎𝑠+𝐵𝑡𝑑𝑖𝑒𝑠𝑒𝑙+𝐵𝑡𝑒𝑙𝑒𝑐−(𝐸𝑡−𝐿𝑆𝑡+𝑁𝑊𝐶𝑡+𝑃𝑀𝑇𝑡+𝑂𝐶𝑡+𝑇𝑡) (8) 
	 Denote 𝑃𝑡𝑔𝑎𝑠 as gasoline price in period t and 𝑄𝑡𝑔𝑎𝑠 as gasoline production in period t. The gasoline price is the target for breakeven price calculation. Thus, 
	             𝐵𝑡𝑔𝑎𝑠=𝑃𝑡𝑔𝑎𝑠×𝑄𝑡𝑔𝑎𝑠         (9) 
	 Denote 𝑃𝑡𝑑𝑖𝑒𝑠𝑒𝑙 as diesel price in period t and 𝑄𝑡𝑑𝑖𝑒𝑠𝑒𝑙 as diesel production in period t. Thus, 
	 𝐵𝑡𝑑𝑖𝑒𝑠𝑒𝑙=𝑃𝑡𝑑𝑖𝑒𝑠𝑒𝑙×𝑄𝑡𝑑𝑖𝑒𝑠𝑒𝑙        (10) 
	 As stated above, diesel prices are assumed to be linearly correlated with gasoline prices, 
	 𝑃𝑡𝑑𝑖𝑒𝑠𝑒𝑙=𝛼𝑃𝑡𝑔𝑎𝑠+𝛽         (11) 
	Substituting (11) into (10), 
	 𝐵𝑡𝑑𝑖𝑒𝑠𝑒𝑙=(𝛼𝑃𝑡𝑔𝑎𝑠+𝛽)×𝑄𝑡𝑑𝑖𝑒𝑠𝑒𝑙       (12) 
	Denote 𝐷𝐸𝑃𝑡 as depreciation in period t, 𝐼𝑁𝑇𝑡 as interest payment in period t, and 𝑅𝑡𝑎𝑥 as tax rate. Thus, the tax payment, 𝑇𝑡, is 
	            𝑇𝑡=(𝐵𝑡𝑔𝑎𝑠+𝐵𝑡𝑑𝑖𝑒𝑠𝑒𝑙+𝐵𝑡𝑒𝑙𝑒𝑐−𝑂𝐶𝑡−𝑁𝑊𝐶𝑡−𝐷𝐸𝑃𝑡−𝐼𝑁𝑇𝑡)×𝑅𝑡𝑎𝑥  (13) 
	 Substituting (9), (12) and (13) into (8), rearranging,  
	𝐵𝑡−𝐶𝑡=𝑃𝑡𝑔𝑎𝑠×[(𝑄𝑡𝑔𝑎𝑠+𝛼×𝑄𝑡𝑑𝑖𝑒𝑠𝑒𝑙)×(1−𝑅𝑡𝑎𝑥)]+(𝛽×𝑄𝑡𝑑𝑖𝑒𝑠𝑒𝑙+𝐵𝑡𝑒𝑙𝑒𝑐−𝑂𝐶𝑡−𝑁𝑊𝐶𝑡)×(1−𝑅𝑡𝑎𝑥)+(𝐷𝐸𝑃𝑡+𝐼𝑁𝑇𝑡)×𝑅𝑡𝑎𝑥−(𝐸𝑡−𝐿𝑆𝑡+𝑃𝑀𝑇𝑡)   (14) 
	Substituting (14) into (2), 
	 𝑁𝑃𝑉=∑{𝑃𝑡𝑔𝑎𝑠×[(𝑄𝑡𝑔𝑎𝑠+𝛼×𝑄𝑡𝑑𝑖𝑒𝑠𝑒𝑙)×(1−𝑅𝑡𝑎𝑥)]+(𝛽×𝑄𝑡𝑑𝑖𝑒𝑠𝑒𝑙+𝐵𝑡𝑒𝑙𝑒𝑐−𝑂𝐶𝑡−𝑁𝑊𝐶𝑡)×(1−𝑅𝑡𝑎𝑥)+(𝐷𝐸𝑃𝑡+𝐼𝑁𝑇𝑡)×𝑅𝑡𝑎𝑥−(𝐸𝑡−𝐿𝑆𝑡+𝑃𝑀𝑇𝑡)}(1+𝑟)𝑡𝑛𝑡=0 
	            (15) 
	Setting NPV to zero and rearranging we get the following equation for breakeven price, 
	   𝑃𝑡𝑔𝑎𝑠=∑[−(𝛽×𝑄𝑡𝑑𝑖𝑒𝑠𝑒𝑙+𝐵𝑡𝑒𝑙𝑒𝑐−𝑂𝐶𝑡−𝑁𝑊𝐶𝑡)×(1−𝑅𝑡𝑎𝑥)−(𝐷𝐸𝑃𝑡+𝐼𝑁𝑇𝑡)×𝑅𝑡𝑎𝑥+(𝐸𝑡−𝐿𝑆𝑡+𝑃𝑀𝑇𝑡)](1+𝑟)𝑡𝑛𝑡=0∑[(𝑄𝑡𝑔𝑎𝑠+𝛼×𝑄𝑡𝑑𝑖𝑒𝑠𝑒𝑙)×(1−𝑅𝑡𝑎𝑥)](1+𝑟)𝑡𝑛𝑡=0 (16) 
	Monte Carlo simulation with 10,000 iterations was conducted based on equation (16). In each iteration, a value of capital cost sampled from its distribution was returned based on which 𝐸𝑡,  𝐿𝑆𝑡, 𝑃𝑀𝑇𝑡, 𝐼𝑁𝑇𝑡  and 𝐷𝐸𝑃𝑡 were calculated for each period. Similarly, uncertain input distributions for conversion technology yield, hydrogen cost and feedstock cost were sampled, and 𝑄𝑡𝑔𝑎𝑠, 𝑄𝑡𝑑𝑖𝑒𝑠𝑒𝑙, 𝐵𝑡𝑒𝑙𝑒𝑐, 𝑂𝐶𝑡, and 𝑊𝐶𝑡 were calculated in each iteration. As a result, a breakeve
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	In the case that future prices follow an unstable trajectory, as long as future prices are projected based on the initial price, the breakeven initial price can be derived. In this scenario, we assume that future prices followed the GBM price projection described in equation (1). From GBM price projection, equation (1), 𝑃𝑡𝑔𝑎𝑠 can be generalized: 
	 𝑃𝑡𝑔𝑎𝑠= 𝑃0𝑔𝑎𝑠𝑒𝑡𝑔+∑𝜀𝑖𝑒(𝑡−𝑖)𝑔𝑡𝑖=0       (17) 
	Substituting (17) into (15), 
	 𝑁𝑃𝑉=∑(𝑃0𝑔𝑎𝑠𝑒𝑡𝑔+∑𝜀𝑖𝑒(𝑡−𝑖)𝑔𝑡𝑖=0)×[(𝑄𝑡𝑔𝑎𝑠+𝛼×𝑄𝑡𝑑𝑖𝑒𝑠𝑒𝑙)×(1−𝑅𝑡𝑎𝑥)](1+𝑟)𝑡𝑛𝑡=0+∑(𝛽×𝑄𝑡𝑑𝑖𝑒𝑠𝑒𝑙+𝐵𝑡𝑒𝑙𝑒𝑐−𝑂𝐶𝑡−𝑁𝑊𝐶𝑡)×(1−𝑅𝑡𝑎𝑥)+(𝐷𝐸𝑃𝑡+𝐼𝑁𝑇𝑡)×𝑅𝑡𝑎𝑥−(𝐸𝑡−𝐿𝑆𝑡+𝑃𝑀𝑇𝑡)(1+𝑟)𝑡𝑛𝑡=0   (18) 
	By setting NPV to zero and rearranging, 𝑃0𝑔𝑎𝑠 can be derived. 
	𝑃0𝑔𝑎𝑠=∑[−∑𝜀𝑖𝑒(𝑡−𝑖)𝑔×𝑡𝑖=0(𝑄𝑡𝑔𝑎𝑠+𝛼×𝑄𝑡𝑑𝑖𝑒𝑠𝑒𝑙)×(1−𝑅𝑡𝑎𝑥)−(𝛽×𝑄𝑡𝑑𝑖𝑒𝑠𝑒𝑙+𝐵𝑡𝑒𝑙𝑒𝑐−𝑂𝐶𝑡−𝑁𝑊𝐶𝑡)×(1−𝑅𝑡𝑎𝑥)−(𝐷𝐸𝑃𝑡+𝐼𝑁𝑇𝑡)×𝑅𝑡𝑎𝑥+(𝐸𝑡−𝐿𝑆𝑡+𝑃𝑀𝑇𝑡)](1+𝑟)𝑡𝑛𝑡=0∑𝑒𝑡𝑔×[(𝑄𝑡𝑔𝑎𝑠+𝛼×𝑄𝑡𝑑𝑖𝑒𝑠𝑒𝑙)×(1−𝑅𝑡𝑎𝑥)](1+𝑟)𝑡𝑛𝑡=0            (19) 
	Therefore, the initial gasoline price, 𝑃0𝑔𝑎𝑠, was simulated based on equation (19) through Monte Carlo simulation, and the breakeven initial price distribution was derived (presented in Fig. 2B). The mean of the distribution is $3.04/GGE, and the standard deviation is $0.52/GGE. Fig. 2C shows the comparison of the breakeven initial price distribution with and without future price trend and uncertainty. The breakeven initial price distribution shifts to left due to the increasing future price trend, and 
	the probability found in CDDs at the given NPV and its corresponding breakeven initial price are equal. This is verified by overlapping the NPV CDD and breakeven initial price CDD (Fig. 3C).  
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	As shown in section 3.2, the math involved in deriving a mathematical solution can become quite involved in complex cases. An alternative way to obtain a breakeven price distribution is to rely on a programming methodology. The followings are steps make use of both the @Risk add-in and Excel Macro Programming: 
	1) A Monte Carlo simulation with a designated number of iterations is run. All simulated values for uncertain variables returned in each iteration are saved. Uncertainties in future prices can be modeled by treating random components as members of simulation inputs. The randomly generated input values of each iteration are treated as one set of simulated values. 
	1) A Monte Carlo simulation with a designated number of iterations is run. All simulated values for uncertain variables returned in each iteration are saved. Uncertainties in future prices can be modeled by treating random components as members of simulation inputs. The randomly generated input values of each iteration are treated as one set of simulated values. 
	1) A Monte Carlo simulation with a designated number of iterations is run. All simulated values for uncertain variables returned in each iteration are saved. Uncertainties in future prices can be modeled by treating random components as members of simulation inputs. The randomly generated input values of each iteration are treated as one set of simulated values. 

	2) All sets of randomly simulated values are entered in the model. Each set of simulated values generates one corresponding breakeven price by applying the Excel goal-seek function.  
	2) All sets of randomly simulated values are entered in the model. Each set of simulated values generates one corresponding breakeven price by applying the Excel goal-seek function.  

	3) Probability and cumulative density distributions can be generated based on the sample of breakeven prices. The resulting breakeven price distributions can be fit to the closest standard distribution using common statistic methods. The @Risk software performs this distribution fitting. The breakeven price at each percentile is obtained. 
	3) Probability and cumulative density distributions can be generated based on the sample of breakeven prices. The resulting breakeven price distributions can be fit to the closest standard distribution using common statistic methods. The @Risk software performs this distribution fitting. The breakeven price at each percentile is obtained. 

	4) Increase the number of iterations of each simulation and repeat 1-3 steps until a smooth and convergent breakeven price distribution is derived. 
	4) Increase the number of iterations of each simulation and repeat 1-3 steps until a smooth and convergent breakeven price distribution is derived. 


	Our analyses show that programming and mathematical procedure yield the same breakeven price distributions when the number of iterations is large enough. The programming method can be a way to examine the accuracy of breakeven price distributions generated by mathematical methods. The programming method to calculate the breakeven price is practical and understandable. When it comes to a complex system with multiple categories of inputs and outputs, the mathematical transformation of equations become complic
	On the other hand, the mathematical method is more convenient for conducting sensitivity analysis, and the programming method may be time-consuming due to the massive calculations. In general, a mathematical method is a preferred option for simple cases, and programming method is universal and is a better fit in complicated cases. The bottom line is that we have described methods that will generate breakeven price distributions for any analysis project case being evaluated. 
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	The methods developed in previous sections permit analysis of measuring how sensitive is breakeven price with regard to important uncertain variables. Besides the boundary sensitivity analysis, we can perform statistic sensitivity analysis applying simulation data (Palisade Corporation 2014). Fig. 4A presents the regression coefficients from the regression of breakeven fuel price on key uncertain variables including capital investment, fuel yield, hydrogen price and feedstock cost, assuming constant future 
	4. Conclusions 
	4. Conclusions 
	4. Conclusions 


	Breakeven price is an advantageous economic indicator compared with net present value (NPV) or internal rate of return (IRR) when evaluating emerging technologies with techno-economic analysis (TEA). In this study, we highlighted the stochastic techno-economic analysis in which Monte Carlo simulation was incorporated into traditional TEA. A case of cellulosic biofuel production from fast pyrolysis and hydroprocessing (FPH) pathway was used to illustrate the methodologies for quantifying the breakeven price 
	consider future price trend and uncertainty. We demonstrated that the breakeven price distributions derived using our methods were coherent with the corresponding NPV distributions regarding the percentile value and the probability of gain/loss.  
	Our experience suggests that breakeven price distributions communicate to investors and decision makers much more effectively than the typical NPV or IRR distributions, and users of the analysis can easily understand it. The distributions can be also used to conduct stochastic dominance analysis to compare projects from the perspective of risk-averse investors (Yao et al. 2015, Zhao, Brown, and Tyner 2015). In addition, breakeven price distributions are useful for conducting policy analysis. One illustratio
	  For all these reasons, we believe that including breakeven price distributions in stochastic techno-economic analysis provides a very valuable addition. In this paper, we have explained how this metric can be included in the analysis. 
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	Fig.1 Net cash flow chart of cellulosic biofuel production using the fast pyrolysis and hydroprocessing pathway. 
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	Fig. 2 Breakeven price distributions. a. The breakeven price distribution with no future price trend and uncertainty; b. the breakeven price with future price trend and uncertainty. The curves in figure a. and b. are fitted distributions. The comparison of the fitted distributions is presented in figure c. 
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	Fig. 3 Cumulative density distribution of NPV and breakeven initial price, based on all the uncertain variables. a. The NPV Cumulative density distribution; b. The breakeven initial price cumulative density distribution. c. The overlap of figures a. and b. The shaded area in figure c represents 25th to 75th percentile area. 
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	Fig. 4. Sensitivity analysis of breakeven price. a. The regression coefficient of breakeven price on uncertain variables; b. breakeven price sensitivity on input percentile of uncertain variables.  
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